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Tannaka Duality

Our starting point will be the Tannaka duality, which is a dictionary between two worlds,
one which we could call algebra, and the other one representation theory or noncommutative
geometry. We let k be a field (we care mostly about real or complex numbers). We will
be vague enough that what we say can be interpreted in several contexts with more or less
technicalities (for instance one could work with topological vector spaces) and we shall ignore
issues which come from the fact that infinite dimensional vector spaces are not dualizable.

The basic piece of the dictionary is a correspondence between k-algebras and (k-linear,
cocomplete, ...) categories C with a functor (fiber functor) C → Vectk. Given an algebra
A one can construct the category C = A−mod of A-modules. Conversely, given a category
C with a fiber functor, one may recover an algebra by taking (the opposite of) the endo-
morphisms of the fiber functor. One may then think of algebras as just a way of presenting
categories.

Now let’s add some structure to our categories and see how it reflects on our algebra.
We first equip C with a monoidal structure ⊗ (compatible with the fiber functor). The cor-
responding algebraic structure is a bialgebra, an algebra with a compatible comultiplication
(A, ·,∆). If we require our monoidal category to be rigid (every object dualizable) we arrive
at the notion of a Hopf algebra, which is a bialgebra together with a morphism (antipode)
S : A→ A satisfying appropriate conditions.

Now if we want a braiding on our category, it turns out that one needs to equip the Hopf
algebra with an universal R-matrix: this is an invertible element R ∈ A⊗ A satisfying

(∆⊗ 1)R = R13R23

(1⊗∆)R = R13R12

∆op = R∆R−1

A Hopf algebra together with an universal R-matrix is called a quasitriangular Hopf algebra.
The braiding V ⊗W = W ⊗ V is then given by τR, where τ is transposition.

Among the class of quasitriangular Hopf algebras there are two extrema. Triangular
Hopf algebras are those for which R21R = 1 ∈ A⊗A. These give rise to symmetric braided
categories. For example, cocommutative Hopf algebras with R = 1 ⊗ 1 are triangular.
These correspond to distributions on Lie groups (i.e, group algebras), and the corresponding
category is the category of representations of the group, which is symmetric monoidal in the
usual way.
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At the other end there are factorizable Hopf algebras, those for which R21R is non
degenerate. These are interestingly braided, and are the ones that we really care about.

Why do we care? Historically, the subject grew out of the study of integrable systems.
It turns out that to construct these one needs matrices R ∈ Mn(C)⊗Mn(C) satisfying the
Yang-Baxter equation

R12R13R23 = R23R13R12 ∈Mn(C)⊗3

This turns out to be satisfied by the universal R-matrix of a quasitriangular Hopf algebra,
after specializing to a representation. The reason this equation holds is due to the fact that
there are two ways of applying the braiding axioms to identify X ⊗ Y ⊗Z with Z ⊗ Y ⊗X,
corresponding with the following two braids

The two braids are isotopic so the two identifications are the same. Written in terms of
R-matrices this yields the Yang-Baxter equation.

A second important application of this is to the construction of Braid/Knot invariants:
for any braid one may associate a product of R-matrices as above, which only depends on
the topological type of the braid. Invariants of the resulting expression give invariants of the
braid. This shows also one reason why one may want factorizable Hopf algebras: one wants
the braiding to be interesting to get nontrivial invariants.

Quantization

Now, how does one ever come up with examples of factorizable Hopf algebras? One possible
strategy is by quantization. Roughly, this means that one constructs interesting, noncom-
mutative examples of the above structures by deforming commutative ones.

Let’s consider the case of algebras first. That means that one starts with a commutative
algebra A and wants to deform it to a family Ah of algebras parametrized by h ∈ k, such
that A0 = A. Observe that if one has that structure then the commutator on Ah may be
written as

[·, ·] = h{·, ·}+O(h2)

Therefore if such a deformation exists, we have in particular an operation {·, ·} : A⊗A→ A
which is both a biderivation and a Lie bracket. This is called a Poisson bracket, and the
data of a commutative algebra with a Poisson bracket is called a Poisson algebra. This
may be thought of, roughly, as a commutative algebra together with a first order jet of a
deformation. The question of reconstructing the deformation Ah from a Poisson algebra is
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subtle, and is the subject of deformation quantization. One usually calls Ah a quantization
of A, and A the (semi)classical limit.

Now, when one works at the classical limit, one sees commutative algebra, and therefore
one also sees geometry. We may think of the commutative algebra A as functions on a
manifold/variety/scheme, etc M. Then the Poisson bracket, being a biderivation, defines a
bivector field p ∈ Γ(Λ2TM) called the Poisson bivector field. The data of a manifold M
together with such a p is called a Poisson manifold. We may think of these as manifolds
together with the data of how to deform its algebra of functions.

Of course, one can always set the Poisson bracket to vanish and this will give rise to
a constant deformation, which is not so interesting. A more interesting example is the
cotangent bundle T ∗X to a manifold X. This has a symplectic structure which is the same
as a nondegenerate Poisson tensor. A deformation quantization is given by the algebra of
quantum observables on X. On local coordinates x1 this is the algebra generated by symbols
xi, ∂i with commutation relations [∂i, x

i] = h. When h = 1 one recovers the (filtered) algebra
of differential operators on X.

Poisson-Lie Groups

Now let’s see how one would construct Hopf algebras from deformation quantization. Hopf
algebras have both a multiplication and comultiplication, so there are two (dual) routes we
could take: either start with something commutative, or with something cocommutative

1. Let’s say we start with (A, ·,∆) a commutative Hopf algebra. In order to deform it we
need the data of a compatible Poisson bracket {·, ·} on A. We think of A as functions on
a manifold, and the comultiplication then defines a product on this manifold. Therefore
A may be thought of as functions on a Lie group G. The Poisson bracket then makes
G into a Poisson manifold. The data (G, p) of a Lie group with a compatible Poisson
structure is called a Poisson-Lie group. These are objects whose algebra of functions
can be deformed into a Hopf algebra.

2. We could also start with (A, ·,∆) a cocommutative Hopf algebra together with a com-
patible Poisson cobracket δ : A → A ⊗ A. This is dual to the above story, and can
be thought of as the Hopf algebra of distributions on a Poisson-Lie group (in other
words, the group algebra). One thing usually thought of from this point of view are
universal enveloping algebras, which can be thought of as algebras of distributions on a
formal group. If one starts with a universal enveloping algebra with a compatible Pois-
son cobracket, the deformation quantization is called a quantized universal enveloping
algebra.

There is a sense in which the above two stories are dual. It turns out that deforming the
algebra of distributions on a group is the same as deforming the algebra of functions on a
suitable dual group. This duality is made more manifest in the following definition:

Definition. A Lie bialgebra is a vector space g together with a Lie bracket [·, ·] : g⊗ g→ g
and a Lie cobracket δ : g→ g⊗ g which is a 1-cocycle for (g, [·, ·]) with values in g⊗ g.
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In other words, this is a pair of dual vector spaces with compatible Lie algebra structures.
The Lie algebra of a Poisson-Lie group turns out to be a Lie bialgebra with cobracket the
derivative of p.

Now we can put the above two stories on an equal footing. If one has a Lie bialgebra
g, the Hopf algebra Sg is commutative and cocommutative, and has both a Poisson bracket
and Poisson cobracket, so it may be deformed in two different directions (multiplication and
comultiplication)

(Ug, δ)

(Sg, [·, ·], δ) Uhg = Oh(G∗)

(O(G∗), [·, ·])

deform ∆deformµ

deform ∆ deformµ

Here G∗ is a (formal) Poisson-Lie group with Lie algebra g∗. The class of Hopf algebras ob-
tained from this procedure sometimes go by the name of quantum groups. Why this name?
It turns out that Hopf algebras can be defined internal to any symmetric monoidal category
(in which case they are usually called Hopf monoids). When the category is furthermore
cartesian, Hopf monoids coincide with group objects. One may think of cartesian categories
as classical, while non cartesian ones exhibit some characteristics of linearity/quantum be-
havior (notably the lack of diagonal maps, which reflects the no-cloning theorem in quantum
mechanics). In this sense Hopf algebras form a generalization of the classical notion of groups
to a quantum context.

Recall that we were interested in Hopf algebras with a universal R-matrix making its
category of modules a braided category. Observe that Ug is cocommutative, so 1 ⊗ 1 ∈
Ug ⊗ Ug makes it into a triangular Hopf algebra. We would like to deform this into an
R-matrix for Uhg. This would have a first order expansion

Rh = 1⊗ 1 + hr +O(h)

It turns out that r has to belong to g⊗ g, and satisfy

δ(X) = Xr

[r12, r13] + [r12, r23] + [r13, r23] = 0

The second equation is called the classical Yang-Baxter equation and arises as the limit of
the usual (quantum) Yang-Baxter equation. A Lie bialgebra together with an element r
satisfying the above two conditions is called a quasitriangular Lie bialgebra, and r is called
its classical R-matrix. Observe that in this context the cobracket is completely determined
by the R-matrix.

Among the class of quasitriangular Lie bialgebras we may also identify two opposite cases:
triangular Lie bialgebras are those for which r21 +r = 0; factorizable Lie bialgebras are those
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for which r21 + r is nondegenerate. These correspond to the classical limits of triangular and
factorizable Hopf algebras.

There is a classification due to Belavin and Drinfeld of factorizable Lie bialgebra struc-
tures on complex simple Lie algebras. If we fix a Cartan subalgebra and choice of positive
roots there is a canonical such structure called the standard Lie bialgebra structure. These
give rise after quantization to the quantum groups of Drinfeld-Jimbo type.

We will not attempt to describe this structure here and will instead content ourselves
with understanding the cases were either the bracket or the cobracket vanish.

Example: Let (g, [·, ·], 0) be a Lie bialgebra with trivial cobracket. This is a triangular Lie
bialgebra with r = 0. The above diagram of quantizations reads

(Ug, 0)

(Sg, [·, ·], 0) Ug

(O(g∗), {·, ·})

deform ∆
deformµ

deform ∆ deformµ

Here the group G∗ is the abelian Lie group g∗, and the resulting Poisson structure is the
Kirillov-Kostant structure. The resulting braided category is the category of representations
of g (which is symmetric monoidal as expected).

Example: Let (g, 0, δ) be a Lie bialgebra with trivial bracket. This is not quasitriangular
unless δ = 0. The diagram in this case is

(Sg, δ)

(Sg, 0, δ) O(G∗)

(O(G∗), 0)

deform ∆deformµ

deform ∆ deformµ

Here the group G∗ is nontrivial but its Poisson bracket vanishes. The category of modules
over O(G∗) is monoidal. The monoidal structure is convolution, which is not commutative
if G∗ is not abelian, as expected.

Symplectic Leaves

Recall that our starting point was Tannaka duality, which told us that (quasitriangular)
Hopf algebras are whatever one needs to present (braided) rigid monoidal categories. Now
we know that one may try to construct Hopf algebras by quantization starting with a Lie
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bialgebra or a Poisson Lie group. One question remains: how is the representation theory
of the quantized algebra reflected at the classical limit? In other words, is there a way of
constructing representations of quantum groups by studying the Poisson geometry of Poisson
Lie groups?

It turns out there is. A first observation is that the quantization Ah of a Poisson algebra
(A, {·, ·}) is in general noncommutative (if the Poisson bracket is nontrivial), but it may
have nontrivial center. Every time that one has a noncommutative algebra with a nontrivial
center, the study of its representation theory breaks down into a part which is the represen-
tation theory of its center (which is commutative so this belongs to algebraic geometry) plus
the representation theory of something centerless. More precisely, Ah is an algebra over its
center Z(Ah), so one may think about it as a family of (centerless!) algebras parametrized
by Spec(Z(Ah)). To construct an irreducible representation of Ah one has to fix a point in
Spec(Z(Ah)) (i.e, fix a central character) and then give an irreducible representation of the
fiber over that point.

There is a similar story in the classical limit for Poisson algebras. A Poisson algebra A
contains a Poisson center Z(A) which is the subalgebra of elements which Poisson commute
with every other element. Dually, Spec(A) is fibered over Spec(Z(A)). It turns out that
the Poisson tensor is tangent to the fibers and (modulo some subtleties when it drops rank,
which we shall ignore) it is nondegenerate when restricted to the fibers. Therefore it cor-
responds to a symplectic structure on the fibers. It follows then that any Poisson manifold
decomposes into a disjoint union of symplectic manifolds, which are called the symplectic
leaves. These are the classical limit of the centerless algebras that we had before. Therefore,
the representation theory of deformation quantization of Poisson manifolds is obtained by
putting together the representation theory of the deformations of its symplectic leaves.

So one reduces the question of constructing representations to the case where the Poisson
manifold is symplectic. Modules over the deformation quantization is one incarnation of the
A-model of the symplectic manifold. One particular way of getting a representation is by
means of geometric quantization. In some cases this will give rise to all (irreducible) repre-
sentations. We shall illustrate this for the case of Hopf algebras obtained from quantizing
Lie bialgebras with trivial bracket or trivial cobracket.

Example: Let (g, [·, ·], 0) be a Lie bialgebra with trivial cobracket. Its quantization is the
universal enveloping algebra Ug, which can be thought of as a deformation of the algebra
of functions on g∗ in the direction of the Kirillov-Kostant bracket. The symplectic leaves
are the coadjoint orbits, and therefore one sees that representations of g should arise from
geometric quantization of coadjoint orbits. This is called the orbit method.

Let’s see how that looks for the case of sl(2,C). Call H,E, F the generators of this
algebra, with the usual relations [H,E] = 2E, [H,F ] = −2F, [E,F ] = H. The Poisson
center is C[c] ⊂ Ssl(2) where c = EF + H2/4. We therefore get a morphism sl(2)∗ → A1

whose fibers away from 0 are smooth quadrics, and the fiber over 0 is a singular quadric
(the nilpotent cone). The symplectic leaves consist of the regular fibers, the nilpotent cone
without the origin, and the origin. The nilpotent cone enjoys a resolution of singularities by
T ∗P1, called the Springer resolution. The regular fibers are twisted cotangent bundles: they
are affine bundles over P1 modeled over T ∗P1.
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One expects therefore by performing geometric quantization that one should be able to
find representations of sl(2) on global sections of line bundles over P1. Indeed, the irreducible
representations of sl(2) consist of H0(P1,O(n)) where n is a nonnegative integer. This is an
instance of the Borel-Weil-Bott theorem.

Example: Consider now the case (g, 0, δ) of a Lie bialgebra with trivial bracket. Here the
associated Poisson-Lie group is G∗ with trivial Poisson tensor. Its symplectic leaves are the
points in G∗. We therefore expect a correspondence between points in G∗ and irreducible
O(G∗)-modules. Indeed, O(G∗)-modules are sheaves on G∗, and one can think of an arbitrary
sheaf as a sum of skyscrapper sheaves, which in turn correspond to points in G∗.
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